skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gu, Binbin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In database applications involving sensitive data, the dual imperatives of data confidentiality and provable (verifiable) query processing are important. This paper introduces PoneglyphDB, a database system that leverages non-interactive zero-knowledge proofs (ZKP) to support both confidentiality and provability. Unlike traditional databases, PoneglyphDB enhances confidentiality by ensuring that raw data remains exclusively with the host, while also enabling verifying the correctness of query responses by providing proofs to clients. The main innovation in this paper is proposing efficient ZKP designs (called circuits) for basic operations in SQL query processing. These basic operation circuits are then combined to form ZKP circuits for larger, more complex queries. PoneglyphDB's circuits are carefully designed to be efficient by utilizing advances in cryptography such as PLONKish-based circuits, recursive proof composition techniques, and designing with low-order polynomial constraints. We demonstrate the performance of PoneglyphDB with the standard TPC-H benchmark. Our experimental results show that PoneglyphDB can efficiently achieve both confidentiality and provability, outperforming existing state-of-the-art ZKP methods. 
    more » « less
    Free, publicly-accessible full text available February 10, 2026
  2. Abstract Blockchain and Decentralized Applications (DApps) are increasingly important for creating trust and transparency in data storage and computation. However, on-chain transactions are often costly and slow. To overcome this challenge, off-chain nodes can be used to store and compute data. Unfortunately, this introduces the risk of untrusted nodes. To address this, authenticated data structures have been proposed, however, this ignores the compute of data from the raw data. We tackle this challenge by introducing zk-Oracle, which provides an efficient and trusted compute and storage off-chain. There is a challenge in using zero-knowledge proofs (zk-proof for short), which is the large proof generation time. We aim to overcome it with novel designs in zk-Oracle. zk-Oracle builds on zk-proofs technologies to achieve two goals. First, the computation of data structures from raw data and the corresponding proof generation is improved in terms of performance. Second, the verification on-chain is inexpensive and fast. Our experiments show that we can speed up zk-proof generation by up to$$550 \times $$ 550 × faster than the baseline method. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Free, publicly-accessible full text available December 1, 2025